Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37367579

RESUMO

Camellia oleifera, a woody plant that produces edible oil, is indigenous to China. The devastating disease of anthracnose inflicts significant financial losses on Ca. oleifera. The primary causative agent of anthracnose on Ca. oleifera is Colletotrichum fructicola. Chitin, a pivotal constituent of fungal cell walls, assumes a critical function in their proliferation and maturation. To study the biological functions of chitin synthase 1(Chs1) in C. fructicola, the CfCHS1 gene knockout mutants, ∆Cfchs1-1 and ∆Cfchs1-2, and their complementary strain, ∆Cfchs1/CfCHS1, of C. fructicola were generated. Our results showed that the colony diameters of wild-type and complement-strain ∆Cfchs1/CfCHS1, mutant ∆Cfchs1-1 and ∆Cfchs1-2 cultured on the CM and MM medium were 5.2, 5.0, 2.2 and 2.4 cm and 4.0, 4.0, 2.1 and 2.6 cm, respectively, which were significantly smaller for the mutant than for the wild type and complement strain; the inhibition rates on the CM medium supplemented with H2O2, DTT, SDS and CR were 87.0% and 88.5%, 29.6% and 27.1%, 88.0% and 89.4%, and 41.7% and 28.7%, respectively, for the mutant strains, ∆Cfchs1-1 and ∆Cfchs1-2, which were significantly higher than those for the other two strains; the rate of hyphal tips with CFW fluorescence in ∆Cfchs1-1 and ∆Cfchs1-2 was 13.3% and 15.0%, which was significantly lower than those for the other two strains; the mutant strains, ∆Cfchs1-1 and ∆Cfchs1-2, lost the ability to produce conidia; the mutant strains showed weaker pathogenicity on wounded and unwounded Ca. oleifera leaves than the wild type and complement strain. The findings of this study suggest that CfChs1 plays a crucial role in the growth and development, stress responses, and pathogenicity of C. fructicola. Thus, this gene could be a potential target for developing novel fungicide.

2.
Phytopathology ; 113(6): 1022-1033, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36576403

RESUMO

Colletotrichum fungi could cause anthracnose, a destructive disease in tea-oil trees. The sterol demethylation inhibitor (DMI) tebuconazole has been widely used in controlling plant diseases for many years. However, the baseline sensitivity of Colletotrichum isolates on tea-oil trees to tebuconazole has not been determined. In this study, the sensitivity to tebuconazole of 117 Colletotrichum isolates from tea-oil trees of seven provinces in southern China was tested. The mean effective concentration resulted in 50% mycelial growth inhibition (EC50), 0.7625 µg/ml. The EC50 values of 100 isolates (83%) were lower than 1 µg/ml, and those of 20 isolates (17%) were higher than 1 µg/ml, which implied that resistance has already occurred in Colletotrichum isolates on tea-oil trees. The EC50 values of the most resistant and sensitive isolates (named Ca-R and Cc-S1, respectively) were 1.8848 and 0.1561 µg/ml, respectively. The resistance mechanism was also investigated in this study. A gene replacement experiment indicated that the CYP51A/B gene of resistant isolates Ca-R and Cf-R1 cannot confer Cc-S1 full resistance to DMI fungicides, although three single point mutants, Cc-S1CYP51A-T306A and Cc-S1CYP51A-R478K, exhibited decreased sensitivity to DMI fungicides. This result suggested that resistance of Colletotrichum isolates was partly caused by mutations in CYP51A. Moreover, the expression level of CYP51A/B was almost identical among Ca-R, Cf-R1, Cc-S1, and Cc-S1CYP51A point mutants, which indicated that the resistance was irrelevant to the expression level of CYP51A, and other nontarget-based resistance mechanisms may exist. Our results could help to guide the application of DMI fungicides and be useful for investigating the mechanism of resistance.


Assuntos
Colletotrichum , Fungicidas Industriais , Fungicidas Industriais/farmacologia , Colletotrichum/genética , Árvores , Doenças das Plantas/microbiologia , Chá , China
3.
J Fungi (Basel) ; 8(9)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36135699

RESUMO

Camellia oleifera is one of the most valuable woody edible-oil crops, and anthracnose seriously afflicts its yield and quality. We recently showed that the CfSnt2 regulates the pathogenicity of Colletotrichum fructicola, the dominant causal agent of anthracnose on C. oleifera. However, the molecular mechanisms of CfSnt2-mediated pathogenesis remain largely unknown. Here, we found that CfSnt2 is localized to the nucleus to regulate the deacetylation of histone H3. The further transcriptomic analysis revealed that CfSnt2 mediates the expression of global genes, including most autophagy-related genes. Furthermore, we provided evidence showing that CfSnt2 negatively regulates autophagy and is involved in the responses to host-derived ROS and ER stresses. These combined functions contribute to the pivotal roles of CfSnt2 on pathogenicity. Taken together, our studies not only illustrate how CfSnt2 functions in the nucleus, but also link its roles on the autophagy and responses to host-derived stresses with pathogenicity in C. fructicola.

4.
mBio ; 13(5): e0195622, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35975920

RESUMO

Camellia oleifera is a woody edible-oil plant in China, and anthracnose occurs wherever it is grown, causing serious losses each year. We previously identified that the histone acetyltransferase CfGcn5 orchestrates growth, development, and pathogenicity in Colletotrichum fructicola, the major causal agent of anthracnose on C. oleifera. To elucidate the underlying mechanism, we conducted a transcriptome analysis and found that CfGcn5 is mainly involved in ribosomes, catalytic and metabolic processes, primary metabolism, and autophagy. In addition, we provided evidence showing that CfGcn5 serves as an autophagy repressor to mediate the expression of many autophagy-related genes (ATG) and undergoes degradation during autophagy. Moreover, we found that the CfATG8 and CfATG9 gene-deletion mutants had defects in mitosis and autophagy, resulting in their decreased appressoria formation rates and lower turgor pressure. These combined effects caused the failure of their appressoria functions and caused defects on their pathogenicity, revealing the importance of autophagy in pathogenicity. Taken together, our study illustrates that the autophagy repressor CfGcn5 undergoes degradation in order to regulate autophagy-dependent pathogenicity in C. fructicola. IMPORTANCE Colletotrichum spp. is ranked in the top 10 plant fungal pathogens and serves as a model for the study of hemibiotrophic pathogens, but its molecular mechanisms of pathogenesis remain largely unknown. Among species of Colletotrichum, C. fructicola causes anthracnose disease on more than 50 plants, such as pears, apples, and the important, edible-oil plant Camellia oleifera. We previously identified that the histone acetyltransferase CfGcn5 regulates growth, development, and pathogenicity in C. fructicola. To explore the underlying mechanisms, we performed comparative transcriptomic studies and found that CfGcn5 regulates global gene expression, including multiple autophagy-related genes (ATG genes). We revealed that CfGcn5 is an autophagy repressor that undergoes degradation during autophagy to govern pathogenicity. We also showed that the autophagy-related proteins CfAtg8 and CfAtg9 are required for full pathogenicity due to their regulatory functions in mitosis and autophagy. Our findings are important because we provide the first comprehensive characterization of autophagy as well as the relationship between acetylation and autophagy functioning in the pathogenesis of Colletotrichum spp., which might offer new potential targets for the management of anthracnose disease.


Assuntos
Colletotrichum , Colletotrichum/genética , Colletotrichum/metabolismo , Virulência , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Doenças das Plantas/microbiologia , Filogenia , Autofagia , Proteínas Relacionadas à Autofagia/genética
5.
BMC Genom Data ; 23(1): 68, 2022 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-36031614

RESUMO

BACKGROUND: Tea oil is widely used as edible oil in China, which extracted from the seeds of Camellia oleifera. In China, the national oil-tea camellia planting area reached 4.533 million hectares, the output of oil-tea camellia seed oil was 627 000 tons, and the total output value reached 18.3 billion dollars. Anthracnose is the common disease of Ca. oleifera, which affected the production and brought huge economic losses. Colletotrichum fructicola is the dominant pathogen causing anthracnose in Ca. oleifera. The retromer complex participates in the intracellular retrograde transport of cargos from the endosome to the trans-Golgi network in eukaryotes. Vacuolar protein sorting 35 is a core part of the retromer complex. This study aimed to investigate the role of CfVps35 in C. fructicola. RESULTS: The CfVPS35 gene was deleted, resulting in reduced mycelial growth, conidiation, and response to cell wall stresses. Further analysis revealed that CfVps35 was required for C. fructicola virulence on tea oil leaves. In addition, the ΔCfvps35 mutant was defective in glycogen metabolism and turgor during appressorium development. CONCLUSION: This study illustrated that the crucial functions of CfVps35 in growth, development, and pathogenicity.


Assuntos
Camellia , Colletotrichum , Doenças das Plantas , Chá , Virulência
6.
J Fungi (Basel) ; 8(4)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35448594

RESUMO

Tea-oil tree (Camellia oleifera Abel.) is a unique woody edible oil species in China. Anthracnose is the common disease of Ca. oleifera, which affected the production and brought huge economic losses. Colletotrichum fructicola is the dominant pathogen causing Ca. oleifera anthracnose. The gene CfSET1 was deleted and its roles in development and pathogenicity of C. fructicola were studied. Our results show that this protein participated in the growth, conidiation, appressorium formation, and pathogenicity of this fungal pathogen. Our results help us understand the mechanisms of pathogenesis in C. fructicola and suggest CfSet1 as a potential target for the development of new fungicide.

7.
Front Microbiol ; 12: 736066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721333

RESUMO

The tea-oil tree Camellia oleifera is native to China and is cultivated in many parts of southern China. This plant has been grown for over 2,000 years, mainly for its high-quality cooking oil. Anthracnose is the main disease of tea-oil tree and results in a huge loss annually. Colletotrichum fructicola is a major pathogen causing anthracnose on tea-oil tree. In a previous study, we characterized that the bZIP transcription factor CfHac1 controlled the development and pathogenicity of C. fructicola. Here, we identified and characterized the function of CfVAM7 gene, which was significantly downregulated at the transcriptional level in the ΔCfhac1 strain under dithiothreitol stress. Targeted gene deletion revealed that CfVam7 is important in growth, pathogenicity, and responses to endoplasmic reticulum-related stresses. Further analysis revealed that CfVam7 is required for appressorium formation and homotypic vacuole fusion, which are important for fungal pathogen invasion. Cytological examinations revealed that CfVam7 is localized to vacuole membranes in the hyphal stage. The Phox homology (PX) and SNARE domains of CfVam7 were indispensable for normal cellular localization and biological function. Taken together, our results suggested that CfVam7-mediated vacuole membrane fusion promotes growth, stress response, and pathogenicity of C. fructicola.

8.
Front Microbiol ; 12: 680415, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34248895

RESUMO

The tea-oil tree (Camellia oleifera Abel.) is a commercial edible-oil tree in China, and anthracnose commonly occurs in its plantations, causing great losses annually. We have previously revealed that CfSnf1 is essential for pathogenicity in Colletotrichum fructicola, the major pathogen of anthracnose on the tea-oil tree. Here, we identified CfGcn5 as the homolog of yeast histone acetyltransferase ScGcn5, which cooperates with ScSnf1 to modify histone H3 in Saccharomyces cerevisiae. Targeted gene deletion revealed that CfGcn5 is important in fungi growth, conidiation, and responses to environmental stresses. Pathogenicity assays indicated that CfGcn5 is essential for C. fructicola virulence both in unwounded and wounded tea-oil tree leaves. Further, we found that CfGcn5 is localized to the nucleus and this specific localization is dependent on both NLS region and HAT domain. Moreover, we provided evidence showing that the nuclear localization is essential but not sufficient for the full function of CfGcn5, and the NLS, HAT, and Bromo domains were proven to be important for normal CfGcn5 functions. Taken together, our studies not only illustrate the key functions of CfGcn5 in growth, development, and pathogenicity but also highlight the relationship between its locations with functions in C. fructicola.

9.
Chem Sci ; 11(25): 6431-6435, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-34094107

RESUMO

In dye-sensitized solar cells (DSSCs), the TiO2/dye interface significantly affects photovoltaic performance. However, the adsorption and photoinduced behavior of dye molecules on the TiO2 substrate remains unclear. Herein, shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) was used to study the adsorption and photoinduced behavior of dye (N719) molecules on different TiO2(hkl) surfaces. On TiO2(001) and TiO2(110) surfaces, the in situ SHINERS and mass spectrometry results indicate S[double bond, length as m-dash]C bond cleavage in the anchoring groups of adsorbed N719, whereas negligible bond cleavage occurs on the TiO2(111) surface. Furthermore, DFT calculations show the stability of the S[double bond, length as m-dash]C anchoring group on three TiO2(hkl) surfaces in the order TiO2(001) < TiO2(110) < TiO2(111), which correlated well with the observed photocatalytic activities. This work reveals the photoactivity of different TiO2(hkl) surface structures and can help with the rational design of DSSCs. Thus, this strategy can be applied to real-time probing of photoinduced processes on semiconductor single crystal surfaces.

10.
BMC Genet ; 20(1): 94, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805867

RESUMO

BACKGROUND: Tea-oil tree (Camellia oleifera) is a unique edible-oil tree in China, and anthracnose occurs in wherever it is cultivated, causing great economic losses each year. We have previously identified the Ascomycete fungus Colletotrichum fructicola as the major pathogen of anthracnose in Ca. oleifera. The purpose of this study was to characterize the biological function of Snf1 protein, a key component of the AMPK (AMP-activated protein kinase) pathway, for the molecular pathogenic-mechanisms of C. fructicola. RESULTS: We characterized CfSnf1 as the homolog of Saccharomyces cerevisiae Snf1. Targeted CfSNF1 gene deletion revealed that CfSnf1 is involved in the utilization of specific carbon sources, conidiation, and stress responses. We further found that the ΔCfSnf1 mutant was not pathogenic to Ca. oleifera, resulting from its defect in appressorium formation. In addition, we provided evidence showing crosstalk between the AMPK and the cAMP/PKA pathways for the first time in filamentous fungi. CONCLUSION: This study indicate that CfSnf1 is a critical factor in the development and pathogenicity of C. fructicola and, therefore, a potential fungicide target for anthracnose control.


Assuntos
Camellia/microbiologia , Colletotrichum/patogenicidade , Proteínas Serina-Treonina Quinases/genética , Carbono/metabolismo , Colletotrichum/genética , Colletotrichum/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deleção de Genes , Filogenia , Doenças das Plantas/microbiologia , Proteínas Serina-Treonina Quinases/metabolismo , Esporos Fúngicos/metabolismo , Estresse Fisiológico
11.
mBio ; 10(5)2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31615964

RESUMO

ADP ribosylation factor (Arf) small GTPase family members are involved in vesicle trafficking and organelle maintenance in organisms ranging from Saccharomyces cerevisiae to humans. A previous study identified Magnaporthe oryzae Arf6 (MoArf6) as one of the Arf proteins that regulates growth and conidiation in the rice blast fungus M. oryzae, but the remaining family proteins remain unknown. Here, we identified six additional Arf proteins, including MoArf1, MoArl1, MoArl3, MoArl8, MoCin4, and MoSar1, as well as their sole adaptor protein, MoGga1, and determined their shared and specific functions. We showed that the majority of these proteins exhibit positive regulatory functions, most notably, in growth. Importantly, MoArl1, MoCin4, and MoGga1 are involved in pathogenicity through the regulation of host penetration and invasive hyphal growth. MoArl1 and MoCin4 also regulate normal vesicle trafficking, and MoCin4 further controls the formation of the biotrophic interfacial complex (BIC). Moreover, we showed that Golgi-cytoplasm cycling of MoArl1 is required for its function. Finally, we demonstrated that interactions between MoArf1 and MoArl1 with MoGga1 are important for Golgi localization and pathogenicity. Collectively, our findings revealed the shared and specific functions of Arf family members in M. oryzae and shed light on how these proteins function through conserved mechanisms to govern growth, transport, and virulence of the blast fungus.IMPORTANCEMagnaporthe oryzae is the causal agent of rice blast, representing the most devastating diseases of rice worldwide, which results in losses of amounts of rice that could feed more than 60 million people each year. Arf (ADP ribosylation factor) small GTPase family proteins are involved in vesicle trafficking and organelle maintenance in eukaryotic cells. To investigate the function of Arf family proteins in M. oryzae, we systematically characterized all seven Arf proteins and found that they have shared and specific functions in governing the growth, development, and pathogenicity of the blast fungus. We have also identified the pathogenicity-related protein MoGga1 as the common adaptor of MoArf1 and MoArl1. Our findings are important because they provide the first comprehensive characterization of the Arf GTPase family proteins and their adaptor protein MoGga1 functioning in a plant-pathogenic fungus, which could help to reveal new fungicide targets to control this devastating disease.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidade , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/genética , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Magnaporthe/genética , Oryza/genética , Oryza/metabolismo , Doenças das Plantas/microbiologia , Esporos Fúngicos/fisiologia , Virulência/genética
12.
Mol Plant Microbe Interact ; 32(4): 437-451, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30451565

RESUMO

The actin cytoskeleton and actin-coupled endocytosis are conserved cellular processes required for the normal growth and pathogenesis of the rice blast fungus Magnaporthe oryzae. We have previously shown that actin regulating kinase MoArk1 regulates actin dynamics and endocytosis to play a key role in virulence of the fungus. To understand the underlying mechanism, we have characterized the actin-binding protein MoAbp1 that interacts with MoArk1 from M. oryzae. The ΔMoabp1 mutant exhibited delayed endocytosis and defects in growth, host penetration, and invasive growth. Consistent with its putative function associated with actin-binding, MoAbp1 regulates the localization of actin patches and plays a role in MoArk1 phosphorylation. In addition, MoAbp1 interacts with MoCap (adenylyl cyclase-associated protein) affecting its normal patch localization pattern and the actin protein MoAct1 through its conserved domains. Taken together, our results support a notion that MoAbp1 functions as a protein scaffold linking MoArk1, MoCap1, and MoAct1 to regulate actin cytoskeleton dynamics critical in growth and pathogenicity of the blast fungus.


Assuntos
Citoesqueleto de Actina , Endocitose , Magnaporthe , Virulência , Citoesqueleto de Actina/metabolismo , Endocitose/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/metabolismo , Magnaporthe/patogenicidade , Proteínas dos Microfilamentos/metabolismo , Oryza/microbiologia , Virulência/genética
13.
Environ Microbiol ; 19(10): 3982-3996, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28504350

RESUMO

The ADP ribosylation factor (Arf) and the coat protein complex I (COPI) are involved in vesicle transport. Together with GTPase-activating proteins (ArfGAPs) and guanine exchange factors (ArfGEFs) that regulate the activity of Arf, they govern vesicle formation, COPI trafficking and the maintenance of the Golgi complex. In an ongoing effort to study the role of membrane trafficking in pathogenesis of the rice blast fungus Magnaporthe oryzae, we identified MoGlo3 as an ArfGAP protein that is homologous to Glo3p of the budding yeast Saccharomyces cerevisiae. As suspected, MoGlo3 partially complements the function of yeast Glo3p. Consistent with findings in S. cerevisiae, MoGlo3 is localized to the Golgi, and that the localization is dependent on the conserved BoCCS domain. We found that MoGlo3 is highly expressed during conidiation and early infection stages and is required for vegetative growth, conidial production and sexual development. We further found that the ΔMoglo3 mutant is defective in endocytosis, scavenging of the reactive oxygen species, and in the response to endoplasmic reticulum (ER) stress. The combined effects result in failed appressorium function and decreased pathogenicity. Moreover, we provided evidence showing that the domains including the GAP, BoCCS and GRM are all important for normal MoGlo3 functions. Our studies further illustrate the importance of normal membrane trafficking in the physiology and pathogenicity of the rice blast fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Magnaporthe/enzimologia , Transporte Biológico , Endocitose , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/patogenicidade , Esporos Fúngicos/metabolismo , Virulência
14.
PLoS Genet ; 13(5): e1006814, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542408

RESUMO

Actin organization is a conserved cellular process that regulates the growth and development of eukaryotic cells. It also governs the virulence process of pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae, with mechanisms not yet fully understood. In a previous study, we found that actin-regulating kinase MoArk1 displays conserved functions important in endocytosis and actin organization, and MoArk1 is required for maintaining the growth and full virulence of M. oryzae. To understand how MoArk1 might function, we identified capping protein homologs from M. oryzae (MoCAP) that interact with MoArk1 in vivo. MoCAP is heterodimer consisting of α and ß subunits MoCapA and MoCapB. Single and double deletions of MoCAP subunits resulted in abnormal mycelial growth and conidia formation. The ΔMocap mutants also exhibited reduced appressorium penetration and invasive hyphal growth within host cells. Furthermore, the ΔMocap mutants exhibited delayed endocytosis and abnormal cytoskeleton assembly. Consistent with above findings, MoCAP proteins interacted with MoAct1, co-localized with actin during mycelial development, and participated in appressorial actin ring formation. Further analysis revealed that the S85 residue of MoCapA and the S285 residue of MoCapB were subject to phosphorylation by MoArk1 that negatively regulates MoCAP functions. Finally, the addition of exogenous phosphatidylinositol 4,5-bisphosphate (PIP2) failed to modulate actin ring formation in ΔMocap mutants, in contrast to the wild-type strain, suggesting that MoCAP may also mediate phospholipid signaling in the regulation of the actin organization. These results together demonstrate that MoCAP proteins whose functions are regulated by MoArk1 and PIP2 are important for endocytosis and actin dynamics that are directly linked to growth, conidiation and pathogenicity of M. oryzae.


Assuntos
Proteínas de Capeamento de Actina/metabolismo , Actinas/metabolismo , Endocitose , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Capeamento de Actina/genética , Magnaporthe/crescimento & desenvolvimento , Magnaporthe/patogenicidade , Micélio/crescimento & desenvolvimento , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Virulência
15.
Sci Rep ; 7: 41148, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117435

RESUMO

Endocytosis is a crucial cellular process in eukaryotic cells which involves clathrin and/or adaptor proteins, lipid kinases, phosphatases and the actin cytoskeleton. Verprolin proteins, such as Vrp1 in Saccharomyces cerevisiae, are conserved family proteins that regulate actin binding and endocytosis. Here, we identified and characterized MoVrp1 as the yeast Vrp1 homolog in Magnaporthe oryzae. Deletion of the MoVRP1 gene resulted in defects in vegetative growth, asexual development, and infection of the host plant. The ∆Movrp1 mutants also exhibited decreased extracellular peroxidase and laccase activities and showed defects in colony pigmentation, hyphal surface hydrophobicity, cell wall integrity, autophagy, endocytosis, and secretion of avirulent effector. Our studies provided new evidences that MoVrp1 involved in actin cytoskeleton is important for growth, morphogenesis, cellular trafficking, and fungal pathogenesis.


Assuntos
Endocitose , Proteínas Fúngicas/fisiologia , Magnaporthe/fisiologia , Proteínas dos Microfilamentos/fisiologia , Reprodução Assexuada , Citoesqueleto de Actina/fisiologia , Autofagia , Parede Celular/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Magnaporthe/genética , Magnaporthe/patogenicidade , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/isolamento & purificação , Oryza/parasitologia , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...